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Examples of quasi-exactly solvable hamiltonians in the Bargmann–Fock representation
are given. The existence of an invariant subspace is studied as a result of hidden symmetry
of the spectral problem.
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1. QUASI-EXACTLY SOLVABLE DIFFERENTIAL OPERATORS

The most important problems in quantum mechanics are these dealing with
spectral problems of differential operators. The eigenvalues of an observable can
be verified in various experiments serving as a confirmation for theoretical pre-
dictions. The point-spectra of Hamilton operators are of prime interest since they
correspond to energies of the considered systems. Since the most typical hamil-
tonians are the sum of laplacian and the scalar function (potential), the eigen-
problem is a differential equation. A historical development of group-theoretical
methods allowed to find an algebraic solution to some of the problems. As an
example let us mention the harmonic oscillator that admits algebraic solution
due to the Heisenberg–Weyl symmetry. Thealgebraizationof the spectral prob-
lem is based upon the existence of a finite dimensional invariant subspace of the
space of the original problem. In such a subspace there is a matrix represen-
tation of the hamiltonian allowing for an exact solution by means of algebraic
methods.

The operatorA will be called quasi-exactly solvable(Shifman, 1989;
Turbiner, 1988; Ushveridze, 1994) if there is a point-spectrum preserving trans-
formationG such thatAG := G−1 AG is a combination of the generators of the
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Lie algebrasl(2):

T+ := 2 j z− z2 d

dz
, T0 := − j + z

d

dz
, T− := d

dz
, (1)

with integral or semiintegralj .
The spaceP spanned by the basis{zk}2 j

k=0, P = lin{zk}2 j
k=0, is an invariant

subspace of any combination ofTi and thusG−1 AG admits algebraization.
The property of quasi-exactly solvability indicateshidden symmetryof the
system.

2. HARMONIC OSCILLATOR

In this section we present two examples of the algebraization procedure ap-
plied to harmonic oscillator and displaced harmonic oscillator. Both problems will
be analyzed in the Bargmann–Fock representation (Schweber, 1967) of the quan-
tum system in the space of the entire complex functions. The scalar product of the
states in this representation reads

〈ψ1|ψ2〉 :=
∫

exp(−|z|2)ψ̄1(z)ψ2(z)dµ(z),

with dµ(z) := 1
pi dx dy for z= x + iy. In this representation there are natural

candidates for the bosonic creation and annihilation operators:

a↔ d

dz
, a† ↔ z, (2)

since they preserve the Heisenberg–Weyl commutation relations [a, a†] =
[d/dz, z] = 1. In the Bargmann–Fock representation the harmonic oscillator
hamiltonianH = a†a reads

H = z
d

dz
(3)

and is quasi-exactly solvable forG = I d, i.e.

HG := G−1HG = T0+ j . (4)

There is no limitation forj and the harmonic oscillator eigenproblem admits
algebraization in the subspace of arbitrary finite dimension—like in the case of
the well known textbook solution.

The displaced harmonic oscillatorH = a†a+ λ(a+ a†) can be represented
as

H = z
d

dz
+ λ

(
z+ d

dz

)
. (5)
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Instead of a simple redefinition of operators (Schweber, 1967) we perform the
transformationG = exp(f (z)) (with an arbitrary analiticf (z)) and obtain

HG = z
d

dz
+ z A(z)+ λz+ λ d

dz
+ λA(z), (6)

whereA(z) := f ′(z). The operatorHG is quasi-exactly solvable if the condition

z A(z)+ λz+ λA(z) = C = const. (7)

is satisfied. Choosing the constantC = −λ2 and neglecting the additive constants
we get

HG = (T0+ j )+ λT−. (8)

The comparison of matrix representations shows that point-spectra of (8) and (4)
are up to a constant equal.

3. OSCILLATOR WITH POLYNOMIAL NONLINEARITY

There are several problems in studying optical properties of nonlinear materi-
als where one considers harmonic oscillator hamiltonians perturbed by nonlinear
terms (Bishop and Vourdas, 1987; Peˇrina et al., 1994; Vourdas, 1992). Let us
consider

H = a†a+ λa†2+ λa2 (9)

or, in the Bargmann–Fock representation

H = z
d

dz
+ λ d2

dz2
+ λz2. (10)

The hamiltonian (9) possesses theSU(1, 1) symmetry (Perelomov, 1986)
and is considered in connection with squeezed states (Bishop and Vourdas, 1987;
Vourdas, 1992). TheSU(1, 1) group is noncompact and thus possesses no finite
dimensional representations. The hamiltonianH is not diagonal in theSU(1, 1)
coherent states representation due to the nontrivial influence of the raising and
lowering operators. Thus theSU(1, 1) symmetry does not result in the algebraiza-
tion. We show that apart of theSU(1, 1) symmetry the system possesses theSU(2)
symmetry. TransformationG = exp(f (z)) of the hamiltonian (10) gives

HG = z
d

dz
+ λ d2

dz2
+ 2λA(z)

d

dz
+ λA′(z)+ z A(z)+ λz2+ λA2(z). (11)

For f ′(z) = A(z) = ωz the operator (11) is quasi-exactly solvable ifω2λ+ ω +
λ = 0 and yields

HG = (1+ 2ωλ)(T0+ j )+ λT−T−. (12)
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Here again j is arbitrary and one can find arbitrary many eigenvalues and
eigenstates.

As an example we calculate explicitly three eigenstates of (11). Fixingj = 1
we diagonalizeHG in the space spanned by{1, z, z2} and get

E1 = 1+ 2ωλ, ψ1(z) = N1G(z),

E2 = 2+ 4ωλ, ψ2(z) = N2zG(z),

E3 = 3+ 6ωλ, ψ3(z) = N2z2G(z).

The normalization constantNi is calculated with respect to the scalar product in the
Bargmann–Fock space. The termT−T− in (12) does not modify the spectrum and
the transformationG has led us to the harmonic oscillator with modified frequency.
If one considers the hamiltonian (9) in the first quantized form one realizes that
it is indeed the case ifλ is real. In that sense the algebraization presented above
allows for slightly more general results.

4. TWO COUPLED OSCILLATORS

Quantum systems composed of interacting bosonic fields play an important
role in quantum optics (Vourdas, 1992). Unfortunately the higher dimensional
spectral problems are essentially more complex for algebraization (Shifman, 1989).
There are only three groups admitting the differential realization in the space of
complex polynomials of two variables namelySU(2)× SU(2), SO(3), andSU(3)
(Shifman, 1989). We focus on the first one since it provides a natural representation
of the harmonic oscillators. In this section we discuss a simple application of the
product representationsl(2)× sl(2) spanned by the two sets of the generators
{T0,±} and{T̃0,±} for algebraization of the spectrum of two coupled oscillators.
Let a and b be bosonic operators satisfying [a, b] = 0. We consider the following
hamiltonian with theSU(1, 1) symmetry (Vourdas, 1992)

H = a†a+ ωb†b+ λa†b† + λba, (13)

which in the product of Bargmann–Fock representations reads

H = z
∂

∂z
+ ωx

∂

∂x
+ λzx+ λ ∂

∂z

∂

∂x
. (14)

We show that there is theSU(2)× SU(2) symmetry hidden behind (14). Since
the problem is essentially two dimensional we seek for a transformationG =
exp(f (z, x)) which applied to (14) yields

HG = z
∂

∂z
+ z Az(z, x)+ ωx

∂

∂x
+ ωx Ax(z, x)+ λzx



P1: FLT

International Journal of Theoretical Physics [ijtp] pp903-ijtp-468237 August 19, 2003 5:0 Style file version May 30th, 2002

Algebraization of Spectral Problems in the Bargmann–Fock Representation 1063

+ λ
(

Ax(z, x)Ay(z, x)+ Axz(z, x)+ Ax(z, x)
∂

∂z
+ Az(z, x)

∂

∂x
+ ∂

∂z

∂

∂x

)
,

(15)

where Ax := ∂
∂x f (z, x), Az := ∂

∂z f (z, x), and Axz := ∂2

∂x∂z f (z, x). The choice
f (z, x) = βzx with β satisfying the conditionβ2λ+ β(ω + 1)+ λ = 0 leads to
the algebraization of (15) in the product representation

HG = (1+ λβ)(T0+ j1)+ (ω + λβ)(T̃0+ j2)+ λT−T̃−. (16)

The constantsj1 and j2 determine the dimension of the product representationP =
lin{zk}2 j1

k=0× lin{xk}2 j2
k=0. They are arbitrary providing algebraization in arbitrary

finite dimensions, e.g., forj1 = j2 = 1/2 one gets the matrix representation in the
four dimensional space spanned by{1, x, z, xz}. Here again the system effectively
decomposes into two harmonic oscillators with modified frequencies.

5. CONCLUSIONS

We presented an algebraic solution for several spectral problems of the oscil-
latory like hamiltonians for one- and two-mode bosonic fields. The natural repre-
sentation of bosonic operators in the Bargmann–Fock space significantly simplifies
the procedure. The algebraic solution was given not only for the harmonic oscil-
lator in this representation but also for nonlinear and higher dimensional models.
In each case considered in the paper algebraization can be performed in the in-
variant subspace of arbitrary finite dimension. It allows to find every finite number
of eigenvalues. The hamiltonians studied in this paper find their application in
quantum optics, e.g., in the information transmission (Vourdas, 1992).

With each of the models considered in the paper we may associate a family of
operators that, being not quasi-exactly solvable in the sense of a hidden symmetry,
are a small perturbation of the model admitting algebraization. The point spectrum
of these operators can be obtained (if exists) via perturbation theory from the
spectrum of the quasi-exactly solvable “parent.” It justifies studying even the most
artificial quasi-exactly solvable toy models.
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